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Abstract: The formation of a bright-field microscopic image of a transparent phase object is described in terms
of elementary geometrical optics. Our approach is based on the premise that the image replicates the intensity
distribution (real or virtual) at the front focal plane of the objective. The task is therefore reduced to finding the
change in intensity at the focal plane caused by the object. This can be done by ray tracing complemented with the
requirement of energy conservation. Despite major simplifications involved in such an analysis, it reproduces
some results from the paraxial wave theory. In addition, our analysis suggests two ways of extracting quantitative
phase information from bright-field images: by vertically shifting the focal plane (the approach used in the
transport-of-intensity analysis) or by varying the angle of illumination. In principle, information thus obtained
should allow reconstruction of the object morphology.
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INTRODUCTION

The diffraction theory of image formation developed by
Ernst Abbe in the 19th century remains central to under-
standing transmission microscopy (Born and Wolf, 1970). It
has been less appreciated that certain effects in transmission
imaging can be adequately described by geometrical, or ray
optics. In particular, the geometrical approach is valid when
one is interested in features significantly larger than the
wavelength. Examples of geometrical descriptions include
the explanation of Becke lines at the boundary of two media
with different refractive indices (Faust, 1955) or the axial
scaling effect (Visser et al., 1992). In this work, we show that
a model based on geometrical optics can be used to describe
the formation of a bright-field transmission image of a
refractive (phase) specimen.

Our approach is based on the notion that in an infinite
tube length microscope, an image replicates the real or
virtual intensity distribution at the front focal plane of
the objective. Thus, the effect of a refractive object can be
analyzed by examining the pattern formed by extending
the incoming rays back to the focal plane. Figure 1 illustrates
the concept. In the absence of a specimen, the intensity
distribution at the focal plane is uniform, and no image is

formed. A phase specimen causes refraction of the rays,
which is produces lighter and darker areas at the focal plane.
These darker and lighter areas are translated into the image.

THEORY AND DISCUSSION

Next, we present the above model of image formation in
quantitative terms. Consider a typical situation in light
microscopy (Fig. 2), where an object (e.g., a biological cell) is
attached to the coverglass on the side of the objective. It is
illuminated by light coming from the condenser on the
opposite side. The cell has a slightly higher refractive index
than the surrounding liquid (typically by ~2–3%) and is
assumed to have a homogeneous structure. The focal
plane of a coverglass-corrected objective is positioned
approximately on the level of the cells but can be shifted up
or down by moving either the sample or the objective.

Figure 3 gives a more detailed view of the ray path
through the sample. A single refraction at the interface of the
cell and its aqueous environment is assumed. It causes
a change in the distribution of intensity at the focal plane
of the objective, which, in turn, determines the intensity
distribution at the image plane. It is possible, of course, to have
a situation when the focal plane is below the cell, in which case
the intensity would also be affected by a second refraction at
the cell-coverglass boundary. This case will not be considered.

Figure 3 introduces the main parameters used in the
model. From the law of refraction, we have:

sinα
sinβ

=
n2
n1

= n; (1)

where n is the relative refractive index. To simplify the
following derivations, we assume that n− 1≪ 1, which is
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usually true for live biological cells. Then, the angle of refrac-
tion dα=α− β is small, and Equation (1) can be written as:

sinα
sinðα - dαÞ =

sinα
sinα - dsinα

=
sinα

sinα - dαcosα
=

1
1 - dα = tanα

= n:

(2)

From here we find the refraction angle:

dα = n - 1ð Þ tan α = n - 1ð Þ dhðxÞ
dx

; (3)

where h(x) is the height of the object boundary over the focal
plane (it can be positive or negative), and x is the position on
the focal plane where it would be intersected by the incident
ray in the absence of the sample. Refraction causes a shift of the
intersection point from x to x'. For small refraction angles dα:

x0 = x + h xð Þdα = x + h xð Þ n - 1ð Þ dhðxÞ
dx

: (4)

Image intensity I(x′) satisfies the equation:

I x0ð Þdx0 = I0 xð Þdx; (5)

where I0(x) is the incident light intensity. Equation (5) states
the condition of energy conservation: all the incident rays
that would arrive at the element dx without refraction are
deflected to the element dx' in the presence of refraction. If
we assume uniform illumination and use relative intensities,
we can set I0(x)= 1. Then:

I x0ð Þ= dx
dx0

=
1

dx0=dx
; (6)

or, taking Equation (4) into account:

I x0ð Þ= 1 + n - 1ð Þ h xð Þ d
2h xð Þ
dx2

+
dh xð Þ
dx

� �2( )" #-1

= 1 + n - 1ð Þ d
dx

h xð Þ dh xð Þ
dx

� �� �-1

= 1 +
n - 1ð Þ
2

d2 h2 xð Þf g
dx2

� �-1
: ð7Þ

Figure 1. In the absence of a specimen, a uniform illumination at the focal plane (2) of the objective (1) produces no
contrast (a). The refractive specimen (3), which, for the sake of simplicity, is depicted here as a lens, alters the distribu-
tion of intensity at the focal plane of the objective; the latter may lie inside (b) or outside (c) the sample. The intensity
pattern at the focal plane is reproduced by the optical system and generates an image. In the case (b), one expects a
lighter area in the central part, where the density of back-projected rays is higher. In the case (c), the area immediately
outside the cone of light formed by the specimen is completely dark. (This effect can be easily observed by putting a
lens under the microscope.)

Figure 2. General setup in transmission brightfield imaging.
1, —slide; 2, focal plane; 3, object; 4, coverglass; 5, objective.

Figure 3. The diagram of rays crossing the sample. A vertical
incident ray R impinges on the object boundary S at the angle α.
Refraction causes its deflection from the vertical line by dα.
The point of intersection of R and S lies at the distance h from the
focal plane F. As a result, the point where the R ray crosses the
focal plane F shifts from x to x′. The focal plane is designated as
xy, and the refraction takes place in the xz-plane.
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Two-dimensional (2D) generalization can be done as
follows. By analogy with Equation (4), the position vector
(x',y') on the focal plane, where the continuation of refracted
rays crosses the focal plane, can be written as:

x0; y0ð Þ= x; yð Þ + h x; yð Þ n - 1ð Þ∇hðx; yÞ; (8)

where ∇ is the 2D gradient in the xy-plane. In terms of the
components:

x0 = x + h x; yð Þ n - 1ð Þ ∂h x; yð Þ
∂x

; y0 = y + h x; yð Þ n - 1ð Þ ∂h x; yð Þ
∂y

: (9)

The line elements dx and dx' in Equation (6) have to be
replaced by the area elements dxdy and dx'dy', and the
equivalent of Equation (6) takes the form:

I -1 x0; y0ð Þ= ∂ðx0; y0Þ
∂ðx; yÞ

����
����: (10)

Thus, the inverse intensity of the image is the Jacobian
determinant ∂ðx0;y0Þ

∂ðx;yÞ
��� ���. By substituting x' and y' from Equation

(9), one obtains:

I - 1 x0; y0ð Þ= ∂x0

∂x
∂y0

∂y
-
∂y0

∂x
∂x0

∂y
= 1 + ðn - 1Þ h

∂2h
∂x2

+
∂h
dx

� �2( )" #
�

1 + ðn - 1Þ h
∂2h
∂y2

+
∂h
dy

� �2( )" #

- n - 1ð Þ h
∂2h
∂x∂y

+
∂h
dx

∂h
dy

� �� �2
: ð11Þ

This equation can be simplified if we assume that var-
iations of the image intensity are small compared with the
average intensity. Then:

I -1 x0; y0ð Þ= 1 + n - 1ð Þ h
∂2h
∂x2

+
∂2h
∂y2

� �
+

∂h
dx

� �2
+

∂h
dy

� �2( )

= 1 + n - 1ð Þ∇ � h x; yð Þ∇h x; yð Þf g
= 1 +

n - 1
2

∇2h2 x; yð Þ; ð12Þ

where ∇2 denotes the 2D Laplacian in the xy-plane. This can
be viewed as a general equation for image intensity. It can be
readily rearranged as a Poisson’s equation for object height
h in terms of known quantities (measured intensity and
refractive index) as:

2
n - 1

I -1 x0; y0ð Þ - 1	 

=∇2h2 x; yð Þ; (13)

which can be solved uniquely for h2 provided boundary
conditions on h2 are supplied. Equation (13) has a strikingly
similar form to the transport-of-intensity equation (TIE),
which will be discussed in the following section, in that
the measured intensity for a pure-phase object is related
to a function of the sample’s thickness through a Poisson’s
equation. Therefore, many of the techniques developed
for solving the TIE may be applicable to this model as

well (Paganin and Nugent, 1998; Volkov et al., 2002;
Bardsley et al., 2011; Tian et al, 2012; Kostenko et al., 2013;
Martinez-Carranza, et al., 2013).

To create a more easily interpretable contrast, one can
collect several images taken under slightly different conditions:

(1) Shift of the focal plane
A shift of the focal plane by dz corresponds to the sub-

stitution h(x,y)→ h(x,y)− dz in Equation (12) and has no
effect on the derivatives. Therefore, one can construct the
difference:

I -12 x0; y0ð Þ - I -11 x0; y0ð Þ= -dz n - 1ð Þ∇2hðx; yÞ; (14)

where I1 and I2 are the image intensities at two different
positions of the focal plane. Now Equation (14) has a simple
interpretation: the contrast is proportional to the local
curvature of the object boundary. This is a well-known
fact, used, for example, in “defocusing” microscopy (Agero
et al., 2004).

It is interesting to compare this result with TIE
(Teague, 1983; Streibl, 1984) obtained from the paraxial wave
equation. The TIE equation for the “logarithmic derivative”
[Equation (7b) in Streibl, 1984 at uniform transmittance] is:

d
dz

� �
ln I x; y ; z= 0ð Þ= -∇2φðx; yÞ; (15)

where φ(x,y) is the phase. If we use a low-contrast approxi-
mation [as in Equation (12)] and realize that (n−1)h(x,y) is
equivalent to the phase ϕ(x,y), then Equations (14) and (15)
become identical. Both are the Poisson equations for the
object profile h(x,y), where the left side represents experi-
mental data. In the presence of image noise and for objects
with complex shape, this equation is difficult to solve. Indeed,
by applying the 2D Gauss theorem, one can see that pertur-
bation from a noisy pixel does not decay, but grows logarith-
mically with the distance from the pixel. Within the
TIE approach, various computational methods have been
developed to minimize artifacts in restored phase maps
(Volkov et al., 2002; Waller et al., 2010; Bardsley et al., 2011;
Bie et al., 2012; Tian et al., 2012; Zheng et al., 2012; Kostenko
et al., 2013; Petruccelli et al., 2013; Zuo et al., 2013; Jingshan
et al., 2014).

Note that although both Equations (13) and (14) are
Poisson’s equations, they are based on two different
mechanisms of contrast generation. In both cases, it is
propagation of refracted rays that generates measurable
intensity contrast, where refraction depends on variations in
the object’s height h. In the case of Equation (13), propaga-
tion is through the object itself, which is why the Poisson’s
equation depends on the square of object height. In Equation
(14), defocus by an amount dz is used to generate the
contrast so the Poisson’s equation depends on the product of
dz and the object height.

In the practical realization of the vertical shift method,
two additional considerations apply. First, the vertical shift
of the focal plane is not equivalent to the vertical shift of the
objective (or of the stage), which is the only distance reported
by the microscope hardware. Thus, to obtain the true dz to be
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used in the calculations, the nominal shift must be multiplied
by the ratio of n1 (or n2, as they are nearly equal) to the
refractive index of the immersion medium of the objective
(Carlsson, 1991; Visser et al., 1992). Second, the focal plane
must remain within the sample or the medium, but not
within the coverglass, as that would introduce a second
refraction which is not accounted for by Equation (14).
For example, if the first image is focused on the coverglass
surface, the second or subsequent images should be focused
further into the sample.

(2) Varying the illumination angle
The other way of creating an interpretable contrast is

to vary the illumination angle, for example, by using an
off-center condenser diaphragm. Variable angle illumination
has been used in differential phase contrast microscopy
(Hamilton and Sheppard, 1984; Tian andWaller, 2015; Chen
et al, 2016) and computer tomography (Sung et al, 2009).
Here we show that quantitative data can, in principle, be
extracted from the above ray model. If γx and γy are small
tilt angles in the xz- and yz-planes, one can use two pairs
of images, taken at ±γ. For the angle γ, Equation (3) is
modified as:

dα= n - 1ð Þ tan α + γð Þ= n - 1ð Þ tan α + tan γ
1 - tan α tan γ

� n - 1ð Þ tan α + γ
1 - γtanα

: (16)

At γtanα≪ 1, the difference between each pair of images
can be expressed as:

I -1+γx x0; y0ð Þ - I -1-γx x0; y0ð Þ= 4γxðn - 1Þ
∂h
∂x

1 +
∂h
∂x

� �2" #
;

I -1+γy x0; y0ð Þ - I -1-γy x0; y0ð Þ= 4γyðn - 1Þ
∂h
∂y

1 +
∂h
∂y

� �2" #
: ð17Þ

These are algebraic equations for ∂h
∂x and ∂h

∂y. When the
derivatives are not too large, the contrast essentially represents
the slope of the profile h(x,y) along the corresponding
direction. After the derivatives are found, the profile h(x,y) can
be obtained by simple integration. However, one complication
might arise if one strives for a higher resolution. The images
forming each pair in Equation (17) are misregistered by the
amount γh(x,y). This would make the task of numerical
reconstruction of the profile h(x,y) at high resolution less
straightforward.

In summary, we have presented a simple theory of
transmission image formation based on ray tracing. The
theory relates directly to the quantity of interest—the object
profile. If the profile of a cell is known from independent
measurements, one should be able to find the average
refractive index, as well as related quantities—water and
protein concentration. Local protein/water variations are
usually less important than the integral values over the entire
cell volume, and thus the geometrical description is appro-
priate. Although ray tracing is a very simplified description
of light propagation, our results are equivalent to those based

on paraxial wave theory (Teague, 1983; Streibl, 1984). The
other finding is the possibility of extracting quantitative
phase information from variable illumination angle,
which leads to simpler equations. Future work will test the
practicality of this approach.
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