
Preliminary Examination  November 2013 

 

Data Structures and Fundamentals of Programming 
 

Problem #1  

 
In C++ implement a generic class, called Queue<T>, that uses a single-linked list 

implementation.  This should implement the queue ADT.  It should be generic on the type of the 

data to be stored.  It must be implemented using a dynamically allocated linked list with all 

allocation and de-allocation done explicitly.   Give all class definitions and implement the 

following for Queue: 

 Default constructor  

 Destructor  

 Copy-constructor 

 Assignment operator 

 enqueue(T) – takes an parameter of type T and adds it to the end of the queue 

 T dequeue() – removes a node from the front of the queue 

 

Note: Your implementation can NOT use STL or any other libraries (standard or otherwise).   

 

 

 

Problem #2   
 

Implement a function, to convert a fully parenthesized infix expression into the corresponding 

postfix expression.  You can assume the expression is correct.  The infix expression will be 

passed into the function as a character array (null terminating) or string.  The binary operators +, -

, *, / with standard precedence are to be supported.  You do not need to support unary operators.  

Additionally, you can assume that a generic class stack<T> exists with push and pop defined 

as normal and you may also use a built in string class. 

 
char expr1[] = "(2*((3+7)-10))"; 

string expr2 = "(16*((4+23)-7))"; 

 
 

 

Problem #3  
 

Implement the function  int G(int m, int n) defined by 

 

 

 

  












0 and 0 if 11,

 0 and 0 if1,1

                 0 if 1,

>n>m,nm,GmG

=n>m,mG

=m+n=nm,G

 

(a) First, using system recursion. 

(b) Second, using only the ADT stack (i.e without using system recursion, vectors, queues, 

maps, etc). 

 



Preliminary Examination  November 2013 

 

Problem #4  
 

Given the following: 

 
struct cellT {  

    int val;  

    cellT *next;  

};  

 

bool contains(cellT *list, cellT *sub);  

 

Write a function that given two linked lists will determine whether the second list is a 

subsequence of the first.  To be a subsequence, every value of the second must appear within the 

first list and in the same order, but there may be additional values interspersed in the first list.  A 

list contains itself; the NULL list is contained in any list.  

 

Here are some examples:  

list  sub  Contains(list, sub)  

14  2  9  1  4  true 

1  4  2  9  9  4  false 

1  4  2  9  1  9  true 

1  4  2  9  1  1  4  false 

1  4  2  9  2  9  10  false 

 

 

 

 

 

 

 


