Outline of workshop

- General overview of NSF (Lique Coolen)
- Research Funding: Mary Ann Raghanti
- Liaisons with Industry: Torsten Hegmann
- Educational Research: Rick Ferdig
- ORCID ID and SciEncV: Michael Hawkins
Overview:
National Science Foundation

Presented by Lique M. Coolen, Ph.D.
Associate Dean of Faculty Research Development
College of Arts and Sciences
Professor Biological Sciences
NSF Mission

- Expand knowledge in science, engineering, and learning: Promote the progress of research
- Support for all fields in of fundamental science and engineering
- It aims to advance knowledge through investments in ideas, people, and infrastructure, and to advance the practice of research
- “And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers”.

https://www.nsf.gov/about/
NSF Funding Opportunities

Research Areas

- Biological Sciences
- Computer and Information Science and Engineering
- Crosscutting and NSF-wide
- Education and Human Resources
- Engineering
- Environmental Research and Education

- Geosciences
- Integrative Activities
- International Science and Engineering
- Mathematical and Physical Sciences
- Social, Behavioral and Economic Sciences

Special Programs

- Broadening Participation
- For Undergraduate Students
- For Graduate Students
- For Veterans
- For K-12 Educators
- For Small Business Programs
- For Postdoctoral Fellows

https://www.nsf.gov/funding/index.jsp
Broadening Participation

• NSF’s commitment to broadening participation is embedded in its Strategic Plan through a variety of investment priorities, including:
 • Preparing a diverse, globally engaged science, technology, engineering, and mathematics (STEM) workforce;
 • Integrating research with education, and building capacity;
 • Expanding efforts to broaden participation from underrepresented groups and diverse institutions across all geographical regions in all NSF activities; and
 • Improving processes to recruit and select highly qualified reviewers and panelists.

• Guided by the Strategic Plan, NSF established a performance area focused on broadening participation: to expand efforts to increase participation from underrepresented groups and diverse institutions throughout the United States in all NSF activities and programs.
Proposal Development and Submission Support

• For pre-submission proposal development:
 • Contact:
 • Lique Coolen at jcoolen@kent.edu

• For proposal submission:
 • Contact:
 • Diana Skok at dskok@kent.edu

• Recommended resource: Grant Application Writer’s Workbook:
 • http://www.grantcentral.com/workbooks/national-science-foundation/
Speakers

General overview of NSF
Lique Coolen

Research Funding:
Mary Ann Raghanti

Liasons with Industry:
Torsten Hegmann

Educational Research:
Rick Ferdig

ORCID ID and ScIEncV:
Michael Hawkins
External research support

- NIH 3U42OD011197-19S1 (subaward from MD Anderson to Raghanti, PI, KSU) 2019-20 $211,925.00
- NSF IRES (PI Anthony Tosi, co-PIs Raghanti, Meindl, Lovejoy) 2019-22 $298,686.00
- NSF BCS-1846201 (PI Raghanti) 2019-22 $309,999.00
- NIH R01ES029344 (subaward to Edler, Raghanti from FIU) 2019-20 $143,624.00
- NSF BCS-1316829 (PI Raghanti) 2013-17 $225,615.00
- NSF BCS-0921079 (PI Raghanti) 2009-13 $289,872.00
- IMLS MA-06-08-0349-08 (PI Dennis, co-I Raghanti) 2008-10 $142,666.00
- Morris Animal Foundation (PI Dennis, co-Is Raghanti, Vick, Wolfe, Wildt) 2008 $51,000.00
- Morris Animal Foundation (PI Dennis, co-Is Raghanti, Brown) 2007 $8,066.00
- Sigma Xi Grants-in-Aid (PI Raghanti) 2001 ~$400.00

Total External research support: $1,681,853.00

External research support to for students

- NSF EAPSI to graduate student Danielle Jones 2017
- NSF EAPSI to graduate student Emily Munger 2015
- Sigma Xi Grants-in-Aid to graduate student Melissa Edler 2014
Your NSF Program Officer

- Identify programs that fit your research
- Email Program Officer – ask for an appointment for a phone conversation
 - Does your research idea fit the program?
 - Identify typical funding ranges for funded proposals in that program
 - Discuss Broader Impacts- propose some options that you would like to include
 - Ask about typical pitfalls and successes
A WINNING FORMULA

- One-page Project Summary
- Project Description
- Reviewer feedback
One-page Project Summary

- **NOT** an afterthought
- Should be the highlight reel
- Overview, Intellectual Merit, Broader Impacts
Project Summary: OVERVIEW

- Two sentences of general background to put your research in context
- One sentence that summarizes your overarching question – big picture view
- A few sentences delving into why your research question is a good one
- Two concluding sentences outlining how you will address the question (what you will look at, what methods you will use)
Project Summary: INTELLECTUAL MERIT

- Start by stating what the results of your research will provide.
- Explain why your data will be valuable—these data currently don’t exist, but once we have these data we will be able to understand x, y, and z. This will inform a, b, and c.
- State how your research fits this program.
- These results will be important to understand x within field y.
- Detail how your results will impact/could influence your discipline and other disciplines. Provide examples—be specific.
- If your results could be transformative, state this and explain how.
Project Summary: BROADER IMPACTS

- This project will generate data- what are the data, how will they be available to other researchers?
- How will this project impact students at KSU (and beyond)?
- How will students participate in research?
- Can you recruit from underrepresented groups? Do you have an established record of this in your lab?
- Is your work interdisciplinary, collaborative?
- Is funding requested to support students?
- How can you engage underrepresented groups, community groups, etc.?
PROJECT DESCRIPTION
15 pages

- INTRODUCTION
 - 1-2 pages to set up your question
 - Broad strokes- One of the most compelling questions in field x is y......
STATE THE RESEARCH OBJECTIVES & SPECIFIC HYPOTHESES

- First state the central question that ties everything together, then:

- Objective 1
 - Hypothesis 1
 - Hypothesis 2

- Objective 2
 - Hypothesis 1
 - Hypothesis 2
 - Hypothesis 3

- Objective 3
 - Hypothesis 1
 - Hypothesis 2
Provide the background for the project - this is where you go into some detail - demonstrate your knowledge of the topic.

Use subheadings to clearly organize the content.
RESEARCH DESIGN AND METHODS

- Link all of the data that will be gathered to the Objectives and Hypotheses [be specific- even add the following to the end of a section: (Objective 2, Hypothesis 1)]. Never assume your reviewer will connect dots- make it easy for them to see the connections.

- Use appropriate subheadings (e.g., study sample, sample justification & power analysis, sample processing, data acquisition, preliminary data, statistical analyses).

- Use tables and figures to simplify things (and save space)

- Statistical Analysis section – explicitly link the analyses to objectives and hypotheses again. End sentences/sections with (Objective x, Hypothesis y).
Summary

Paragraph 1: The present proposal aims to…. (fill in the blank). Then re-phrase the central question in one pithy sentence. State your expectations in one or two sentences.

Paragraph 2: To understand compelling big question x, we need to know y. This research will provide y, which will get us closer to x.

This should be compelling- your reader should WANT to know the answer to your question.
TIMELINE

Break it up by year or other big chunk of time. Can be in broad strokes, but must be reasonable. Can be a table.
INTELLECTUAL MERIT

- MUST have this subheading.
- How does this build upon what you’ve already done?
- How will your results contribute to the field represented by this NSF program? Can you tie it into the mission of that specific program or other NSF programs?
- How will your results impact or inform other fields?
BROADER IMPACTS (1 page)

- MUST have this subheading
- I include the following subheadings under Broader Impacts and address each one:
 - Advancing discovery & understanding while promoting teaching, training, and learning (student participation in research)
 - Broaden participation of underrepresented groups
 - Broaden dissemination to enhance scientific understanding (in addition to traditional publications, presentations, provide outreach - community, public lectures, and/or via news agencies, social media).
 - Benefits to society (data that can be archived, results that inform other disciplines, questions).
WHO SHOULD BE A SUGGESTED REVIEWER?

People who cite you!
People who are experts who you don’t know and have not met.
What do reviewers say?

◦ Statistical power – power analyses
◦ Broader impacts – this bar keeps moving – higher and higher
◦ Explicitly link data and data analyses to hypotheses
◦ Provide alternative explanations – if your hypothesis is not supported, what would it mean?
◦ AVOID objectives that hinge on each other. If Objective 1 fails, can Objectives 2 and 3 stand on their own?
◦ Provide future directions to show the utility of the data that you will generate (these do not need to be something that YOU would or even could do...)
WHEN YOU GET REJECTED....
Every time I thought I was being rejected from something good, I was actually being re-directed to something better.

- Dr. Steve Maraboli

REVISE

- Set up a time to talk with your Program Officer.
- Establish a revision plan and outline this plan to your PO.
- Take the conversation slow- have questions written down to keep the conversation going.
- Response to reviewers in proposal.
- Re-submit for the next deadline.
You will **succeed** if you persevere; and you will find **joy** in overcoming obstacles.

— Helen Keller

“You’re a fighter. Look at everything you’ve overcome. Don’t give up now.”

— Olivia Benson

You’re allowed to scream, you’re allowed to cry, but do not give up.

The master has failed more times than the beginner has ever tried.
Speakers

- General overview of NSF Lique Coolen
- Research Funding: Mary Ann Raghanti
- Liaisons with Industry: Torsten Hegmann
- Educational Research: Rick Ferdig
- ORCID ID and ScIEncV: Michael Hawkins
NSF Grant Writing Workshop

Liaisons with Industry
Torsten Hegmann, Director (AMLCI)
NSF Programs (led or participated in…)

• Division of Materials Research DMR (SSMC, CMP and MRI; Solid State and Materials Chemistry, Condensed Matter Physics, and Major Research Instrumentation)
• Division of Chemistry CHE (REU; Research Experience for Undergraduate)
• Division of Electrical, Communications and Cyber Systems ECCS (EPMD, CCSS, GOALI; Electronic, Photonic & Magnetic Devices and Communications, Circuits and Sensor Systems)
• Participated in DMR-MRSEC (Materials Research Science and Engineering Center), DMR-STC (Science and Technology Center)
NSF Programs (liaison w/ industry)

- GOALI – Grant Opportunities for Academic Liaisons with Industry
- PFI – Partnership for Innovation – RP track – Research Partnership
- IIP – Industrial Innovation and Partnership – includes PFI, I-Corps (innovation CORPS program), INTERN (internships), IUCRC (industry-university cooperative research centers), SBIR (small business innovation research), and STTR (small business technology transfer)
NSF Program (GOALI)

- Established, interactive, working relationship with an industry partner
- IP and Materials Transfer Agreements need to be in place and provided during submission – this needs to be negotiated with the University and the industry partner
- There is a special project Proposal Form prior to the 15-page research description
NSF Program (GOALI)

• Proposal needs to clearly delineate:
 • why partnership is essential (nature of partnership)
 • Industry Co-PI (but NSF does not provide funds to industry partner)
 • What is industry partner contributing to the project (beyond materials)
• What is your path to commercialization
• Milestones and Deliverables need to be spelled out clearly
NSF Program (GOALI)

• Discussions with program officers upfront and early in the process – you need to know if the program encourages GOALI proposal
• Interactions with industry partner are part of the reporting structure
• Next steps:
 • PFI-RP track (specific partner for new commercialization ideas)
 • SBIR, STTR (start-ups)
 • IUCRC (center)
Speakers

General overview of NSF
Lique Coolen

Research Funding:
Mary Ann Raghanti

Liaisons with Industry:
Torsten Hegmann

Educational Research:
Rick Ferdig

ORCID ID and ScLEncV:
Michael Hawkins
Programs: Directorate for Education and Human Resources (EHR)

This is a list of all the programs within the Directorate for Education and Human Resources (EHR).

Key: © Crosscutting | NSF-wide

- Division of Graduate Education (DGE)
 - Accelerating Discovery: Educating the Future STEM Workforce (AD)
 - CyberCorps(R) Scholarship for Service (SFS)
 - EHR Core Research (ECR): Building Capacity in STEM Education Research (ECR: BCSER)
 - EHR Core Research: Production Engineering Education and Research (ECR)
 - Graduate Research Fellowship Program (GRFP)
 - Graduate Research Internship Program (GRIP)
 - Innovations in Graduate Education (IGE) Program
 - National Science Foundation Research Traineeship (NRT) Program
 - Secure and Trustworthy Cyberspace (SaTC)
 - Secure and Trustworthy Cyberspace Frontiers (SaTC Frontiers)
 - Training-based Workforce Development for Advanced Cyberinfrastructure (CyberTraining)

- Division of Research on Learning in Formal and Informal Settings (DRL)
 - Advanced Technological Education (ATE)
 - Advancing Informal STEM Learning (AISL)
 - Computer Science for All (CSforAll) Research and RPPs
 - Discovery Research PreK-12 (DRK-12)
 - EHR Core Research (ECR): Building Capacity in STEM Education Research (ECR: BCSER)
 - EHR Core Research: Production Engineering Education and Research (ECR)
 - Innovative Technology Experiences for Students and Teachers (iTEST)
 - Smart and Connected Communities (S&CC)
 - STEM + Computing PreK-12 Education (STEM+C)

- Division of Undergraduate Education (DUE)
 - DUE Current Programs
 - Advanced Technological Education (ATE)
NSF Grant Funding - ~$5.26 million

NSF Reviewerships

• Advancing Informal STEM Learning Review Panel
• Cyberlearning DIP Review Panel
• Cyberlearning EXP Review Panel
• Cyberlearning Resource Center Review Panel
• Informal Science Education Review Panel
• iTEST Review Panel
• STEM+C Review Panel
6 Lessons

- **Intellectual Merit**: The Intellectual Merit criterion encompasses the potential to advance knowledge; and

- **Broader Impacts**: The Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.

Pedagogy Matters
People Matter
Production Matters
Collaboration Matters
Constructs Matter
Ideas Matter
Pedagogy matters
People matter
Production matters
Collaboration matters
Constructs matter
Ideas matter
Welcome to MyCPH

MyCPH is a web- and mobile-based point tracking system developed by researchers at Kent State University’s Research Center for Educational Technology, College of Public Health, and College of Arts and Sciences. Faculty using MyCPH can track community engagement; they can also create assignments for students. Students can use the web or mobile versions (iOS or Android) to track practicum, internship, and class assignment locations. To begin using MyCPH, please send an email to cphadmin@gmail.com

Existing users, please click “Sign in” on the upper right. You may also download the app below.
Nursing Simulations
https://tinyurl.com/e2confvideo
Pedagogy Matters
People Matter
Production Matters
Collaboration Matters
Constructs Matter
Ideas Matter

https://xr.kent.edu/
Weathering and Water at the Ledges

Natural Surface, 105 ft elevation change. | 1.75 Miles | Ledges Trailhead

Earn your Ledges, Weathering and Water Badge by discovering how water and weathering created and continue to shape the Ledges!

Living Life on the Ledge(s)

Weathering and Water at the Ledges

Follow the Ledges Trail from the Overlook to discover how water formed the Ledges. Look into the past, present, and future roles water plays in molding the landscape. Your effort on the trail is rewarded with a new perspective on this unique rock formation.
The Use of Mobile Applications for Informal Science Learning in Parks

NSF # DRL-1422764
Dr. Richard E. Ferdig ¹, PI
Dr. Patrick Lorch ², Co-PI
Dr. CC Lu ¹, Co-PI
Dr. A. Kratcoski ¹, Co-PI

Partners:
Kent State University¹
Cuyahoga Valley National Park
Cleveland Metroparks²
KSU Research & Evaluation Bureau

Pedagogy Matters
People Matter
Production Matters
Collaboration Matters
Constructs Matter
Ideas Matter
Use of ORCID ID and SciEncV

Michael Hawkins
Data Librarian
Kent State
Useful links for ORCID ID and SciENcv

- https://orcid.org/
- https://www.youtube.com/watch?v=PRWy-3GXhtU&feature=youtu.be
- https://www.library.kent.edu/research-tools
Proposal Development and Submission Support

• For pre-submission proposal development:
 • Contact:
 • Lique Coolen at jcoolen@kent.edu

• For proposal submission:
 • Contact:
 • Diana Skok at dskok@kent.edu

• Recommended resource: Grant Application Writer’s Workbook:
 • http://www.grantcentral.com/workbooks/national-science-foundation/