Problem #1
Let \(A \) and \(B \) be two sequences of \(n \) integers each. Given an integer \(m \), describe an \(O(n \log n) \) time algorithm for determining if there is an integer \(a \) in \(A \) and an integer \(b \) in \(B \) such that \(m = a + 2b \).

Problem #2
Bob loves computer science and wants to plan his course schedule for the following years. He is interested in the following nine CS courses: CS15, CS16, CS22, CS31, CS32, S126, CS127, CS141, and CS169. The course prerequisites are:

- CS15: (none)
- CS16: CS15
- CS22: (none)
- CS31: CS15
- CS32: CS16, CS31
- CS126: CS22, CS32
- CS127: CS16
- CS141: CS22, CS16
- CS169: CS32

Find the sequence of courses that allows Bob to satisfy all the prerequisites. Describe your method briefly.

Problem #3
We are given a line \(L \) that represents a long hallway in an art gallery. We are also given a set \(X = \{x_0, x_1, \ldots, x_{n-1}\} \) of real numbers that specify the positions of paintings in this hallway. Suppose that a single guard can protect all the paintings within distance at most 1 of his or her position (on both sides). Design a linear time algorithm for finding a placement of guards that uses the minimum number of guards to guard all the paintings with positions in \(X \).