## 22005 Analytic Geometry and Calculus III (4)

In a Calculus III course, students should:

- develop mathematical thinking and communication skills and learn to apply precise, logical reasoning to problem solving, as emphasized in the calculus renewal movement.
- be able to communicate the breadth and interconnections of the mathematical sciences through being presented key ideas and concepts from a variety of perspectives, a broad range of examples and applications, connections to other subjects, and contemporary topics and their applications.
- experience geometric as well as algebraic viewpoints and approximate as well as exact solutions.
- use computer technology to support problem solving and to promote understanding (e.g., graphics packages enhance multivariable calculus).
- for students in the mathematical sciences, progress from a procedural/computational
  understanding of mathematics to a broad understanding encompassing logical reasoning,
  generalization, abstraction, and formal proof; gain experience in careful analysis of data; and
  become skilled at conveying their mathematical knowledge in a variety of settings, both orally
  and in writing.

## The successful Calculus III student should be able to:

- 1. Perform and apply vector operations, including the dot and cross product of vectors, in the plane and space. Graph and find equations of lines, planes, cylinders and quadratic surfaces.
- 2. Differentiate and integrate vector-valued functions. For a position vector function of time, interpret these as velocity and acceleration .\*
- 3. Evaluate limits and determine the continuity and differentiability of functions of several variables. \*
- 4. Describe graphs, level curves and level surfaces of functions of several variables.\*
- 5. Find arc length and curvature of space curves, including the use of unit tangents and unit normals; identify and interpret tangential and normal components of acceleration.
- 6. Find partial derivatives, directional derivatives, and gradients and use them to solve applied problems.\*
- 7. Find differentials of functions of several variables and use them to solve applied problems.
- 8. Find equations of tangent planes and normal lines to surfaces that are given implicitly or parametrically.\*
- 9. Use the chain rule for functions of several variables (including implicit differentiation).\*
- 10. For functions of several variables, find critical points using first partials and interpret them as relative extrema/saddle points using the second partials test. Find absolute extrema on a closed region. Apply these techniques to optimization problems.\*
- 11. Use Lagrange multipliers to solve constrained optimization problems.
- 12. Evaluate multiple integrals in appropriate coordinate systems such as rectangular, polar, cylindrical and spherical coordinates and apply them to solve problems involving volume, surface area, density, moments and centroids.\*
- 13. Use Jacobians to change variables in multiple integrals.
- 14. Evaluate line and surface integrals. Identify when a line integral is independent of path and use the Fundamental Theorem of Line Integrals to solve applied problems.\*
- 15. Identify conservative and inverse square fields.\*

- 16. Find the curl and divergence of a vector field, the work done on an object moving in a vector field, and the flux of a field through a surface. Use these ideas to solve applied problems.\*
- 17. Introduce and use Green's Theorem, the Divergence (Gauss's) Theorem and Stokes's Theorem.\*
- 1,5,7,11,13 are optional topics in Ohio Transfer Module.