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Abstract

We present DRIFT1, a total ordering multicast algorithm optimized for ad hoc networks.
DRIFT combines virtual flooding with a communication history ordering algorithm. Virtual flood-
ing is a way of using unrelated message streams to propagate message causality information in
order to accelerate message delivery. We review the total order multicast problem and the unique
challenges posed in ad hoc networks. We describe DRIFT and its use of virtual flooding in de-
tail. We provide optimizations for implementation. We implement DRIFT on a wireless sensor
network. For comparison, we implement the communication history ordering algorithm, TOF, on
which DRIFT is based. Both require that all messages be received by all nodes, we implement a
reliable local broadcast scheme to achieve reliable message transmission. We evaluate DRIFT’s
performance through experimentation and simulation. We employ wireless channel emulation
as well as radio transmission in our experimental approach. We study the effects of varying the
relative rate at which messages are multicast using both physically flooded messages and non-
flooded messages as carriers of the virtual flood. We examine the impact of varying the period of
non-flooded messages. From our wireless transmission experiments we find DRIFT delivers mul-
ticast messages twice as fast as TOF using only physically flooded messages as carriers. DRIFT
achieves a sixfold speedup when periodic non-flooded messages act as carriers in addition to the
physically flooded messages.
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1 Introduction

Recent advances in PDA and wireless sensor technology enable ad hoc networks of these devices to

handle increasingly sophisticated tasks. As the reliance on these devices grows, so does the need to

bring well-established communication primitives to such networks. One such primitive is total order

multicast. As a motivating example, consider that a temporary military sensor network is deployed to

protect an extended valuable asset. The sensor network does not have any routing infrastructure: the

communication is multi-hop and ad hoc. Several operators move through the field and periodically

issue directives for all sensor nodes to change the mode of surveillance or focus on particular targets

of observation. It is mission-critical that the directives are delivered in the same order at each sensor

node. Otherwise, different parts of the network may start performing conflicting tasks. Thus, the

directives need to be sent usingtotal order multicast.

Total order multicast has been studied extensively, predominantly in wired networks. An order

is imposed on the multicast messages and all nodes are expected to deliver them in this order. One

ordering approach is to arrange messages according to causal precedence. Concurrent messages are

arranged in some deterministic order, e.g., according to the sender’s identifier. The nodes buffer the

received messages and thendeliver them to the application in this order. Traditionally, total order

multicast algorithms do not consider the routing aspect of message transmission and assume that

the network is completely connected (each node participating in the multicast has a channel to every

other node). However, maintaining such routing infrastructure may not be feasible in ad hoc networks,

especially if nodes are mobile, as in the above scenario. Thus, due to node mobility and large scale

of the network either proactive or reactive route maintenance may not be efficient. Hence, traditional

total order multicast algorithms may not be applicable to such networks.

In such networks,floodingis an effective mechanism of reaching all nodes in the network without

underlying routing infrastructure. In its simple form, a flooding source broadcasts a message to its

neighbors and all other nodes rebroadcast the flooded message exactly once. Note that we distinguish

between a network-wide flooding and a(local) radio broadcast, which is a transmission that is re-

ceived by all nodes within transmission range of the broadcasting node. The use of flooding requires

nodes to forward messages sent to other nodes. Thus, there is an opportunity to piggyback infor-

mation on the rebroadcast messages. We call this techniquevirtual flooding. We apply it to a total

order multicast algorithm inspired by Lamport’s algorithm [2]. The resulting total order multicast al-

gorithm, which we call DRIFT, is optimized for ad hoc networks and enables the recipients to deliver

the received messages faster.

In implementation, to guarantee that all nodes receive all messages, flooding must be augmented

with a reliable local broadcastscheme. Such schemes may make use of periodic non-flooded mes-

sages to recover lost messages. These messages provide another carrier for a virtual flood. By utilizing

these non-flooded messages, DRIFT can propagate message causality information faster, leading to

lower delivery latency. We present simulation and experimentation results that demonstrate significant

performance gains due to virtual flooding.
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The remainder of the paper is structured as follows. In Section 2 we introduce the total order

multicast problem and survey existing work. In Section 3 we present virtual flooding. We give a

detailed description of DRIFT in Section 4. In Section 5, we describe implementation considerations

for DRIFT. In Section 6 we describe our implementation of DRIFT in a wireless sensor network and

present results obtained from experimentation and simulation. We conclude the paper in Section 7.

2 Total Order Multicast and Ad Hoc Networks

Total order multicast (or TO-multicast)2 is a fundamental communication mechanism utilized by a

variety of applications. It has two communication primitives: TO-multicast and TO-deliver. An

application program invokesTO-multicastto send a message to all the nodes of the multicast group.

To ensure that the recipients agree on the delivery order, they may buffer and reorder the received

messages. Once the message order is established, a node executesTO-deliverto convey the message

to the application.

2.1 Ad Hoc Network Specifics

The network consists of a set of radio-communication capable nodes. A subset of these nodes are

sources— Σ and may invoke TO-multicast, while another subset aredestinations— ∆ invoking TO-

deliver. The two sets, in general, are not related as a source may not have to TO-deliver messages.

Some nodes in the network may be in neither set: they act only as message forwarders.

Certain properties of ad hoc networks differentiate them from conventional wired networks. Com-

munication between two nodes is immediate if the two nodes are within transmission range of each

other. Otherwise, intermediate nodes may have to forward the message along multiple hops from the

source to the destination. The nodes may potentially be mobile which further complicates communi-

cation. Network and individual node resources such as available bandwidth, battery power, memory

size, etc. may be limited.

In such setting, it may not be feasible to maintain routing infrastructure. Instead, message flooding

may be used as a predominant communication primitive. Hence the need to develop a TO-multicast

algorithm specifically optimized to use flooding. Before we describe the algorithm, we survey TO-

multicast algorithms already published in the literature.

2.2 TO-Multicast Algorithms Overview

TO-multicast algorithms typically assume the existence of a reliable message delivery mechanism

which guarantees that all nodes receive the multicast message. A variety of TO-multicast algorithms

are described in the literature. In their survey paper, Défago et al. [3] classify the algorithms according

their ordering techniques:sequencer-based, privilege-based, destination, andcommunication history.

2Total order multicast is sometimes also calledatomic multicast.
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Our overview of TO-multicasts in wired networks is deliberately incomplete: we cite one or two

typical examples per technique. For detailed discussion and comparison of TO-multicast algorithms

we refer the reader to the original survey paper [3]. This overview motivates communication history

ordering as a TO-multicast technique of choice for DRIFT.

Sequencer-based ordering.In this approach one node is selected as thesequencer. Every node

that wishes to TO-multicast a message contacts the sequencer and obtains a sequence number which

is then used to determine the delivery order. To balance the load, the sequencer function can be suc-

cessively performed by multiple nodes. An example of this approach for fixed networks is described

by Navaratnam et al. [4]. Anastati et al. [5] and Bartoli [6] describe a sequencer-based TO-multicast

for single-hop mobile networks. They consider an infrastructure-based network where a set of wired

gateways order the multicast messages and ensure their transmission to the mobile nodes. In con-

trast, we do not make use of a stationary wired infrastructure in our algorithm. Moreover, wireless

communication in our setting is multihop rather than single hop.

While sequencer-based algorithms may perform well in fixed networks, they may not be appli-

cable to ad hoc networks. In particular, the sequencer and a routing path to it needs to be known to

all the sources. The necessity of a single sequencer limits the scalability of this approach. Notice

also that before a message is TO-multicast to the destinations, an additional point-to-point message

communication from the source to the sequencer is usually required. In an ad hoc network this may

increase message delivery latency and add message overhead.

Privilege-based ordering. In this type of algorithms, the source TO-multicasts a message when

the source is granted an exclusive privilege to do so. One way to ensure exclusivity is to circulate

a single token among sources. A source can TO-multicast a message only when it holds the token.

An example of such algorithms in wired networks is Train [7]. A token-based algorithm in mobile

ad hoc networks is described by Malpani et al. [8]. Token-based algorithms require maintenance of

routing information. They also require token maintenance and recovery. Thus, such algorithms may

not always be practical in ad hoc networks.

Destination ordering. In this approach, the destinations (possibly anagreement subsetof these

nodes) agree on the message delivery order. An example of this class is the TO-multicast algorithm

by Chandra and Toueg [9]. This approach requires extensive communication within the agreement set

and between this set and the other destinations. Thus, destination ordering may not be appropriate for

ad hoc networks.

Communication history ordering. The algorithms of this class deliver messages based on the

causal order of multicasts. Causal relation [2] establishes a partial order of messages. This partial

order is expanded to total order by delivering concurrent messages in some deterministic way. There

is a number of communication history-based algorithms for wired networks [10, 2, 11]. Prakash et

al. [12] describe a communication history-based TO-multicast algorithm for mobile networks. Unlike

DRIFT, their algorithm uses wired infrastructure. Communication history-based ordering is rather

promising for ad hoc networks as it is entirely distributed. It also scales well as there is no need for
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extra ordering messages. DRIFT belongs to this class.

Probabilistic multicast. Luo et al. [13] explore a probabilistic approach to total order multicast

in ad hoc networks. Their algorithm guarantees delivery with a certain probability. In contrast, in this

paper we focus on TO-multicast with deterministic guarantees.

2.3 The Problem of Communication History Ordering in Ad Hoc Networks

As we discussed the advantages of communication-history ordering approach to TO-multicasting for

ad hoc networks, we shall now focus on the specifics of this type of design by presenting Lamport’s

algorithm [2, 3] (which is the basis of DRIFT). This algorithm assumes FIFO communication channels

and reliable message transmission. It is based on logical clocks. Before TO-multicasting a message,

the source increments its logical clock and timestamps the message with this new clock value. Each

destination TO-delivers the messages in the increasing order of timestamps. Messages with identical

clock values (these messages have been sent concurrently) are delivered in some deterministic order,

e.g., in the order of their senders’ identifiers. Since message receipt is reliable, every node TO-delivers

the messages in the same order.

The main difficulty in Lamport’s approach is to delay the message delivery long enough to ensure

that messages with smaller timestamps are not received in the future. Note that every source mono-

tonically increases the timestamps it assigns to the multicast messages. Since messages from the same

source are received in FIFO order, once a destination receives a message with a certain timestamp,

all successive messages from this source will bear greater timestamps. Every destinationn stores the

latest received timestamp for each source. The messages are delivered according to the following

rule. Noden can TO-deliver a particular messagem only after it receives a message with a higher

timestamp from every source. Due to the FIFO message delivery, this guarantees that in the futuren

will not receive messages with timestamps smaller than that ofm.

Hence, the delivery rate of all destinations depends on the sending rate of the source that multicasts

least frequently. Moreover, as described, Lamport’s algorithm is not terminating: to ensure delivery at

all destinations, each source has to continuously multicast messages. The delivery can be implemented

by requiring that each node periodically multicasts a dummy message. The only purpose for such

dummy message is to notify the other destinations of the source’s most recent logical clock value.

However, as this approach introduces extra message overhead it may be impractical. We propose an

alternative technique to propagate recent logical clock values of the sources. Our approach exploits

the properties of ad hoc networks. We call this technique virtual flooding.

3 Virtual Flooding

Virtual floodingdistributes data to every node in the network by attaching it to unrelated messages

propagated in the network. Virtual flooding is different fromphysical flooding(or just flooding) as

it does not require any extra messages to be sent. Specifically, to propagate virtually flooded data, a
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node attaches the data to physically flooded message it has to locally broadcast. Consider the example

in Figure 1(i). The network consists of five nodesa throughe in a line. The message transmission

range for each node only covers its immediate neighbors.

Nodea physicallyfloods messagem (represented by a black box in the figure). Nodec virtually

floods messagem′ (white box). Whenm reachesc (see Figure 1(i 3)),c attachesm′ to m and resends

m||m′. Nodesb andd receive the joint message (see (i 4)). Noded resends the joint message again.

Thus, with a single physical flood, the virtually flooded messagem′ reaches all nodes in the network

excepta. Another physical flood from any node in the network results ina receivingm′ (see (i 5)).

The number of physical floods required to propagate a virtually flooded message varies. In the

worst case this number is proportional to the diameter of the network. Consider the example in

Figure 1(ii). In the best case nodea contains messages for both virtual and physical flooding. In

this case only one physical flood is required. However, in case the virtually and physically flooded

messages are located at the opposite ends of the network, it takes two floods to propagate them.

Provided that sufficiently many physical floods occur, virtually flooded messages eventually reach

all nodes in the network. While it increases the size of physically flooded messages, it results in better

bandwidth utilization as the virtually flooded data does not require separate messages. Thus, there

is no overhead incurred in acquiring the radio channel and no extra message headers are required.

This advantage is particularly important if the virtually flooded data is relatively small in size like the

causality information virtually flooded by DRIFT as we describe in the next chapter.

4 DRIFT Description

The key idea of DRIFT is to use virtual flooding to propagate information about the last logical clock

values of the other sources seen by some source. This approach lowers delivery latency. In this

section, we describe how virtual flooding is utilized in DRIFT. We then describe the algorithm, and

demonstrate its operation with an example. We conclude the chapter by describing an extension for

using non-flooded messages as carriers for virtual flooding.

Initially, we assume that destinations are static. Each flooded message is reliably received by every

node. Multiple messages from an individual source are received by each node in FIFO order. Nodes

do not crash. The sources do not join or leave the network (i.e. we considerstaticgroup membership).

Furthermore, we assume that at least one source sends an infinite number of messages. We discuss

how these assumptions may be relaxed or implemented in Chapter 5.

4.1 Virtual Flooding in DRIFT

DRIFT extends Lamport’s TO-multicast. It uses virtual flooding to propagate timestamp information

and alleviate the need for periodic dummy message transmission. The idea is as follows. Suppose

nodep receives messagem from sourceq with timestampts. Observe that to safely deliverm, p

does not necessarily need to receive a message with timestampts′ > ts from another sourcer. It is
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(i) Virtual flooding example.

(ii) Efficiency of virtual flooding.

Figure 1: Virtual flooding example.
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sufficient thatp learns that it will not receive a message fromr with a timestamp less than or equal

to ts. When a source selects a new timestamp for the message to multicast, the timestamp is chosen

such that it exceeds the timestamps of the messages that the source has received. Thus, ifp learns that

r received a message with a timestampts or greater, it can safely deliverm. In DRIFT, each source

virtually floods its current logical clock value.

Recall that as presented in Chapter 3, all virtually flooded data reaches every node. Yet, in our

case, only the freshest logical clock values are of significance. Hence, in DRIFT, this information is

updated at every node and only the most recent logical clock information per source is sent with each

physical message. This causes the virtually flooded information to be constantly updated along the

way.

Although we assume that the messages multicast by a single source are received by each node in

FIFO order, the virtual flooding information is attached to arbitrary messages. Thus, the timestamps

carried by virtual flooding may overtake the ones carried by physical messages. For example, suppose

nodep multicasts a message with timestampt1 and later virtually floodst2 > t1. It may happen that

some nodeq receives a message carryingt2 in its virtual flooding part earlier than the message with

t1. If q usest2 to deliver some message with timestampt3 such thatt1 < t3 < t2 the total order

is violated. Thus, care must be taken when delivering a message based on timestamp information

received via virtual flooding. In DRIFT we use sequence numbers to relate physically and virtually

flooded timestamps.

4.2 Algorithm Description

The pseudocode of DRIFT for each nodep is shown in Figure 2. Every source (p ∈ Σ) maintains

its logical clocklc as well as sequence numbersn of the last message that it multicasts. Every node

maintains a set of received message information as well as a setSeento keep track of virtual flooding

information. Each destination (p ∈ ∆) also maintains the sets of ready for delivery —READYand

delivered —DLVD message information. In addition, each destination has an arrayRcvdSNto store

the last sequence number of a message received from each respective source. DRIFT contains two

actions. The first action —TO-multicast(m) is invoked when the application requires to multicast a

messagem. The second action — message receipt, is executed whenp receives a message. Function

getHighestTimestampis used as a shorthand for repeated operation of selecting highest-timestamped

entries out ofSeenin both actions.

If a sourcep has a messagem to multicast, it executesTO-multicast. By executing this action

p obtains a new timestamp (lc) and a new sequence number for the message. This information is

entered inSeen. Nodep then broadcasts the message to its neighbors. The freshest virtual flooding

information is attached to the message. Specifically,TO-multicast invokesgetHighestTimestamp

which selects fromSeenthe highest timestamped entry for each source.

Whenp receives a message, it performs the following three operations (see Figure 2): virtual

flooding update (vf update), received message processing (rcpt processing), and message delivery

8



nodep
variables

if p ∈ Σ — p is a source
lc — local logical clock, initially 0
sn— sequence number of last message multicast, initially 0

RCVD— received message info, initially∅
Seen— virtual flooding info set, initially∅
if p ∈ ∆ — p is a destination

READY, DLVD — ready for delivery and delivered messages, initially∅
RcvdSN— sequence number of the last received message for eachi, initially all 0-s

actions
TO-multicast(m)

lc := lc + 1
sn := sn+ 1
Seen:= Seen∪ {〈p, sn, lc〉}
broadcast(m, p, sn, lc, getHighestTimestamp(Seen))

when receive(qm, q, qsn, qts, qSeen)
vf update: Seen:= Seen∪ qSeen
rcpt processing: if 〈qm, q, qsn, qts〉 6∈ RCVDthen /* received for the first time */

RCVD:= RCVD∪ {〈qm, q, qsn, qts〉}
if p ∈ Σ then

lc := max(lc, qts) + 1
Seen:= Seen∪ {〈p, sn, lc〉}

if p ∈ ∆ then
RcvdSN[q] := qsn

broadcast(qm, q, qsn, qts, getHighestTimestamp(Seen))
delivery: if p ∈ ∆ then

READY:= {〈um, u, usn, uts〉 ∈ RCVD\ DLVD |
∀i ∈ Σ,∃〈i, isn, its〉 ∈ Seen:
RcvdSN[i] = isn∧ uts≤ its}

DLVD := DLVD∪ READY
while READY 6= ∅ do

let 〈vm, v, vsn, vts〉 ∈ READYbe such that
∀〈um, u, usn, uts〉 ∈ READY: vts< uts∨ (vts= uts∧ v ≤ u)

TO-delivervm
READY:= READY\ {〈vm, v, vsn, vts〉}

function getHighestTimestamp(Seen)
highestSeen= ∅
foreach i ∈ Σ do

let 〈i, isn, its〉 ∈ Seenbe such that∀〈i, isn′, its′〉 ∈ Seen: its′ ≤ its
highestSeen:= highestSeen∪ {〈i, isn, its〉}

return (highestSeen)

Figure 2: DRIFT pseudocode.
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(delivery). Notice that sources that are at the same time also destinations process their own messages

similar to the messages received from other sources. In virtual flooding updatep merges its own

virtual flooding data inSeenwith that carried by the received messageqSeen. In the second operation

p checks if the received message is new. If so,p adds the message information toRCVD. If p is

a source, it updates it local clock and virtual flooding information about itself inSeen. If p is a

destination, it updates the sequence number of the last received message from the source inRcvdSN.

Thenp rebroadcasts the message. Note that the message is forwarded with the most up-to-date virtual

flooding data. In casep is a destination, after received message processing,p evaluates if any of the

buffered messages are ready for delivery. The procedure is as follows. Destinationp forms a set

of candidates for deliveryREADY. A candidate〈um, u, usn, uts〉 is an undelivered message with the

following characteristics: for each sourcei there is an entry〈i, isn, its〉 in virtual flooding setSeensuch

that this entry corresponds to a message already received byp: RcvdSN[i] = isn and the timestamp

of the candidate message is less than the timestamp of the sourceuts< its; or, in case the timestamps

are equal (uts= its), the source identifiers are used to break a tie (u ≤ i). After forming the candidate

setREADY, p repeatedly examines the set and select the message with the smallest timestamp. Again,

the source identifiers are used to break a tie. The selected message is TO-delivered.

4.3 Example Operation.

We demonstrate the operation of DRIFT with an example (see Figure 3). The example network has

four nodes:{a, b, c, d} out of which two —a andb are sources and the other two are destinations.

Nodea multicasts messagesm1 andm3, while b multicastsm2. In our example we focus on the

delivery of the messages at destinationsc andd and skip unrelated events. The depicted events happen

in sequence. The sequence is from top to bottom.

4.4 Extension for Non-Flooded Messages

In addition to the physically flooded multicast messages, we may employ non-flooded messages as

carriers of the virtual flood. By using these messages as carriers we can improve the latency by

increasing the speed at which message causality information is propagated throughout the network.

Notice that sending and receiving these messages should not modify the value of the node’s logical

clock or sequence number.

The additional actions required for each nodep to use non-flooded messages is shown in Figure 4.

sendNonFloodedis invoked when the node is ready to broadcast a non-flooded message. Whenp

receives a non-flooded message, the second action —receiveNonFlooded, is executed.

When a nodep has a non-flooded message to broadcast, it executessendNonFlooded. This action

attaches the freshest virtual flooding information to the non-flooded message. When a node receives

a non-flooded message messages, the messageqm is processed, theSeenis updated and, if the node

is a destination,RCVDis checked for deliverable messages.
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a sends:〈m1, a, 1, 1, {〈a, 1, 1〉}〉
b sends:〈m2, b, 1, 1, {〈b, 1, 1〉}〉
a sends:〈m3, a, 2, 2, {〈a, 2, 2〉}〉
a forwards:〈m2, b, 1, 1, {〈a, 2, 3〉〈b, 1, 1〉}〉
b forwards:〈m3, a, 2, 2, {〈a, 2, 2〉〈b, 1, 2〉}〉
c receivesm1 : RcvdSN= [1, 0], Seen= {〈a, 1, 1〉}

cannot deliverm1 sinceSeendoes not have an entry forb
c receivesm2 via a : RcvdSN= [1, 1], Seen= {〈a, 1, 1〉, 〈a, 2, 3〉, 〈b, 1, 1〉}

deliversm1 since its timestamp ismts = 1 andSeenhas an entry for each source that
allows addition ofm1 to READY; specifically〈a, asn= 1, ats= 1〉 ∈ Seen,
for this entryRcvdSN[a] = asn,mts = ats anda ≤ a, notice that〈a, 2, 3〉 ∈ Seencannot be used
since the message with sequence number 2 is not received yet,
〈b, bsn= 1, bts= 1〉 ∈ Seen, for this entryRcvdSN[b] = bsn, mts = bts anda < b

c receivesm3 via b : RcvdSN= [2, 1], Seen= {〈a, 1, 1〉, 〈a, 2, 2〉, 〈a, 2, 3〉, 〈b, 1, 1〉, 〈b, 1, 2〉}
forwards:〈m3, a, 2, 2, {〈a, 2, 3〉〈b, 1, 2〉}〉 note updated entry fora in qSeen,
deliversm2 andm3

d receivesm2 : RcvdSN= [0, 1], Seen= {〈b, 1, 1〉} cannot deliver messages
d receivesm1 : RcvdSN= [1, 1], Seen= {〈a, 1, 1〉, 〈b, 1, 1〉} deliversm1

d receivesm3 via b andc : RcvdSN= [2, 1], Seen= {〈a, 1, 1〉, 〈a, 2, 3〉〈b, 1, 1〉, 〈b, 1, 2〉}
deliversm2 andm3

Figure 3: DRIFT: example operation.

5 Implementation Considerations

Many of the assumptions made in our description of DRIFT are non-trivial to implementing. For

example, it is not uncommon for nodes to be mobile, limited in resources or prone to failure. We now

discuss various ways of relaxing the assumptions.

5.1 Optimizing Data Structures

Some of the wireless ad hoc platforms have limited memory resources (e.g. Crossbow’s MICA2 motes

[14]). The data structures used in DRIFT can be optimized to reduce memory consumption at each

individual node. Observe that there is no need to keep track of messages after they are TO-delivered.

Thus, the function of setsRCVDandDLVD can be modified. SetDLVD can be disposed of altogether.

SetRCVDcan only keep the messages that are not yet delivered. With this modification, the candidate

message selection proceeds as before. However, in the original version of DRIFT,RCVD is used to

recognize duplicate messages inrcpt processingoperation. Yet, since we assume single source FIFO

message delivery, arrayRcvdSNcan be used for this purpose. Specifically, if a node receives a message

qm from sourceq with sequence numberqsnandRcvdSN[q] = qsnthen the newly received message

is a duplicate and should be discarded.

SetSeencan also be optimized. Notice thatSeenonly needs to contain the elements pertaining

to undelivered messages. Once the message is delivered, all virtual flooding information about it can

be removed. Moreover, according to the way the entries inSeenare used, for each node and each

sequence number it is sufficient to store only the entry with the highest timestamp.
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nodep
actions

sendNonFlooded(m)
broadcast(m, getHighestTimestamp(Seen))

when receiveNonFlooded(qm, qSeen)
processMessage(qm)

vf update: Seen:= Seen∪ qSeen
delivery: if p ∈ ∆ then

READY:= {〈um, u, usn, uts〉 ∈ RCVD\ DLVD |
∀i ∈ Σ,∃〈i, isn, its〉 ∈ Seen:
RcvdSN[i] = isn∧ uts≤ its}

DLVD := DLVD∪ READY
while READY 6= ∅ do

let 〈vm, v, vsn, vts〉 ∈ READYbe such that
∀〈um, u, usn, uts〉 ∈ READY: vts< uts∨ (vts= uts∧ v ≤ u)

TO-delivervm
READY:= READY\ {〈vm, v, vsn, vts〉}

Figure 4: DRIFT additional actions.

The size ofSeencan be further decreased at the expense of message delivery latency. The modi-

fication is as follows. SetSeenkeeps at most two entries per each sourceq. One entry has the highest

timestamp for the sequence number of the last received messageRcvdSN[q]. This is the entry that is

used in case the node gets virtual flooding data that there is an outstanding message fromq. The other

entry inSeenhas the highest timestamp seen (either through message receipt or virtual flooding) from

q. This entry is used if there are no outstanding messages. Notice that there is a potential delivery

delay if there are multiple outstanding messages from the same source. Suppose messagesm1 and

m2 from q are in transit and are not received by nodep. The messages’ sequence numbers are1 and

2 respectively. Nodep learns through virtual flooding, thatq had a timestampts1 and sequence num-

ber1. Later,p also learns thatq had timestampts2 and sequence number2. Due to the limitations

that are imposed on modifiedSeen, 〈q, 2, ts2〉 has to replace〈q, 1, ts1〉. However, whenp receives

m1, p cannot usets2 if messages are eligible for delivery asm2 is still in transit andp no longer

has access tots1. Notice that setREADYis not necessary for implementation. Each nodep can just

maintainRCVDsorted in timestamp order. For delivery evaluation,p can examine if the message

with the smallest timestamp inRCVDpasses delivery conditions. If so, the message is delivered and

the next one is examined. As presented, DRIFT uses unbounded integers to sequence numbers and

timestamps. However, they can be easily bounded by reusing them after some time.

5.2 Termination

Observe that for message delivery DRIFT assumes that at least one source continues to multicast

messages indefinitely. This assumption can be lifted as follows. If a destination has undelivered
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messages and has not received a message for a certain time, it multicasts a dummy message. The

delivery of this dummy message is not necessary. The other nodes can use this physical flood to

transmit the virtual flooding information required for delivery. Several dummy multicasts may be

required for termination.

5.3 Bounding Message Size

As described, the amount of virtual flooding data appended to each message is proportional to the

number of sources in the network. However, the message size or bandwidth limitations may not

accommodate all this information in a single message. Observe, however, that the correctness of the

algorithm does not depend on the amount of virtual flooding data put into each individual message.

Less virtual flooding data per message results in less bandwidth overhead, while potentially larger

delivery latency. Note that eliminating the virtual information altogether reduces DRIFT to classic

Lamport’s TO-multicast [2].

5.4 Dynamic Groups and Failures

So far we assumed that the set of sources is static. However, in some applications, the nodes may

join and leave the network. In this case the nodes have to adjust their logical clock entries and other

accounting information. Notice that arrival and departure of non-sources does not affect the algo-

rithm. They may simply leave or start TO-delivering messages respectively. In case of sources, the

situation is more complicated. If a source intends to leave the network it TO-multicasts a message

announcing its departure. It can then immediately leave the network. Upon delivery of this message,

the destinations remove this source and adjust their data structures accordingly.

The procedure of joining the network is as follows. A new sourced contacts one of the ex-

isting sources (e.g., by using simple, geographically bounded flooding). The existing source then

TO-multicasts a join message ond’s behalf. Every existing source addsd and updates its data struc-

tures accordingly. A special case arises if the network has no existing sources. This special bootstrap

case can be handled as described by Cavin et al [15].

Let us now consider crash-faults and un-announced node departures. The latter occurs if the

node fails to notify the others when leaving the network. It is handled similar to crashes. Notice

again that the crash for a non-source does not affect DRIFT. If a source crashes, the other nodes

have to be able to detect this crash. Crash detection can be implemented using simple flooding or

other techniques. However, the discussion of fault-detection mechanisms is outside the scope of this

paper; the interested reader is referred, for instance, to work of Friedman and Tcharny [16]. Upon

detection of a source crash, the detecting source TO-multicasts a message informing the network of

the departure of the faulty source.
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5.5 FIFO and Reliable Transmission

DRIFT assumes FIFO delivery of messages from a single source. However, this assumption is not

difficult to implement as the sequence numbers for each message are available. DRIFT may buffer

messages received out-of-order and process them in sequence number order. Notice that while the

out-of-order messages themselves have to be buffered, the virtual flooding information they carry can

be processed without delay.

Reliable message receipt is required for DRIFT. Message reception rates in wireless networks are

significantly lower than they are in wired networks. Furthermore flooding oversaturates the channel,

causing deterioration of message reception [17]. Even though a node is given the opportunity to

receive a single message multiple times, due to collisions the node may not receive the message

altogether [18].

An effective mechanism of ensuring reliable message receipt isreliable local broadcast. In reli-

able broadcast every neighbor of the sender receives the message. Notice that even though wireless

radio transmissions are broadcasts, reliability is not guaranteed as some of the nodes may not re-

ceive the message. Several methods of implementing reliable broadcast are described in the literature

[19, 20, 21, 22, 23].

In Alagar et al.[19] each node maintains a history of messages sent and received. When a node

detects a new neighbor, they exchange history information. Each node then transmits messages that

the other is missing. Acknowledgments are used to confirm message receipt. Pagani [20] present a

protocol that assumes the hosts are grouped into clusters. Each cluster head is responsible for ensuring

reliable local delivery within its cluster. The cluster head of the cluster that originated the message, is

responsible for ensuring all clusters successfully receive the message. In RBS [21] receivers detect the

loss of a message throughrelayer broadcast sequence numbersfrom their neighbors. When a loss is

detected, a negative acknowledgment, NACK, is sent to the neighbor. Upon receipt of the notification,

the neighbor rebroadcasts the lost message. In addition to NACKs, ROB [22] uses the detection of

collisions by one-hop neighbors to cause the retransmission of a message.

Livadas and Lynch [23] describe a reliable broadcast scheme based on frontier messages. Their

scheme is particularly suitable for resource contrained devices. Each node does not have to maintain a

neighborhood set, large buffers for message reordering or any other data. The frontier message algo-

rithm works as follows. The source attaches a sequence number to each message it sends. The receiver

keeps track of the messages received in FIFO order. Lethsn be the highest sequence number among

such messages. Periodically, each receiver broadcasts afrontier messagecontaining itshsn value. If

a node receives this message with anhsn smaller than its local value, the receiver rebroadcasts the

missing messages. Thus, eventually all nodes receive all source messages.
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6 Wireless Sensor Network Implementation

In this chapter we discuss the implementation of DRIFT for a wireless sensor network, the challenges

we encounter, and our experimental and simulation approach. In Section 6.1 we describe our target ad

hoc network platform. We solve many challenges to implement DRIFT for a wireless sensor network,

we discuss our solutions to these challenges in Section 6.2. In Section 6.3, we define our approach for

evaluating DRIFT’s performance. We present our experimental and simulation results in Section 6.4

and Section 6.5, respectively.

6.1 Implementation Platform

To evaluate the performance of DRIFT in a practical ad hoc network we implement it to run on Cross-

bow’s MICA2 motes [14, 24]. The motes are a sensor network platform popular in both academia and

industry. They run the TinyOS [24] operating system. We use the nesC [25] programming language

to implement DRIFT.

We perform our experiments on a static testbed we callBenchNet. BenchNet contains32 MICA2

motes mounted to a fixed surface. Each mote is connected via its communication port to an ether-

net programming board. These programming boards form the instrumental backchannel that allow

monitoring applications and the motes to communicate.

Our simulations are run in TOSSIM [26], a wireless sensor network simulator that is source code

compatible with the MICA2 platform. Thus, we are able to use the same code for our experiments

and simulations. This gives greater fidelity to our simulation results.

6.2 Implementation Challenges

DRIFT and the total order multicast algorithm on which it is based require reliable message transmis-

sion. Achieving reliable message transmission is the foremost challenge in implementing DRIFT on

our chosen platform. One approach is to replace the wireless broadcasts withwireless channel emu-

lation. When a mote is to multicast a message, the message is sent over the instrumental backchannel

to the wireless channel emulator. The emulator then sends the message to nodes that should receive

it based on predefined rules. This approach provides greater control over the message propagation

at the expense of lower fidelity to the actual wireless signal propagation. A second approach is to

implement in-network reliability with a mechanism such as reliable local broadcasts. This approach

provides higher fidelity but results in uncontrollable experiment running times as network density

increases. To bound the running time, the scale of the experiments has to be limited. We perform

experiments using both approaches.

Single source FIFO message delivery is also required by DRIFT. In environments where memory

resources are plentiful, a reordering buffer would be appropriate. When memory is scarce, the simplest

solution is to drop out-of-order messages. When destinationr receives a message from sourceq, r
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drops the message ifqsn 6= RcvdSN[q] + 1. This approach may incur additional messaging overhead.

It is the one we take.

Wireless sensor network devices are characterized by their scarcity of memory and computational

resources. MICA2 motes are no exception. Similar to many embedded environments, TinyOS only

permits static memory allocation. To conserve memory and minimize computation overhead, our

implementations use the following data structure optimizations. As the number of source nodes and

the number messages that the source nodes will multicast is known a priori, we can limit the size of

Seen, RCVD, DLVD andRcvdSN. Seenbecomes a two dimensional array that maintains the entry

with the highest timestamp seen for a particular source and sequence number. TheRCVDset only

needs to be large enough to hold a sufficient number of undelivered messages to allow progress. By

limiting the number of messages multicast by each source and the maximum rate delay (described

in Section 6.3), we can greatly reduce the size ofRCVD. We avoid the additional memory overhead

maintaining aREADYset by providing a function to retrieve the minimum message inREADY. We

useRcvdSNto deterimine if a message arrives out-of-order.

When using frontier messages, each node must maintain a message history. To minimize its size,

we only maintain information necessary to reconstruct lost messages. That is, for each source and

sequence number we record the logical clock value.

6.3 Performance Evaluation Approach

The delivery latency of TO-multicast depends on the rates at which the sources TO-multicast mes-

sages, thebase rate, as well as the relative difference in these rates between the sources, therate

delay. To evaluate the effect of the flooding rate and the relative rate differences, we vary the multi-

cast rate as follows. Sourcei multicasts with ratebaseRate + i × rateDelay. Base rates are chosen

to ensure sufficient time for all nodes to receive all messages multicast when there is no rate delay.

We measure the impact of virtual flooding by comparing the performance of total order multicast

with virtual flooding (Total Order with Virtual Flooding(TOVF)) and without virtual flooding (Total

Order with Flooding only(TOF)). In what follows, we measure the delivery latency of TOF and

TOVF. That is, the time needed to TO-deliver a message after it has been received at a destination

node. In our calculations,speedupis the latency of TOF divided by the latency of TOVF:speedup

= latencyTOF / latencyTOV F . In addition to measuring the delivery latency of TOF and TOVF, we

study the impact of using the frontier messages as a carrier for virtual flooding (Total Order with

Virtual Flooding Plus(TOVF+)) in Subsection 6.4.2. When comparing TOF to TOVF+ speedup is:

speedup = latencyTOF / latencyTOV F+. Unless noted otherwise, the measurements for TOF and

TOVF or TOVF+ are taken in the same experimental trial — for any received messages we store the

time needed to TO-deliver with and without virtual flooding.
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6.4 Experimental Results

6.4.1 Wireless Channel Emulation

Setup. We arrange16 motes in a4 × 4 grid. Each mote reliably communicates with the adjacent

neighbors in the grid. That is, each mote has up to4 neighbors and the network’s diameter is6 hops.

We implement TOF and TOVF separately. The4 interior nodes are sources. All nodes are destinations.

Each source multicasts10 messages. We use a base rate of30 seconds. In our experiment we vary the

rate delay from0 to 10 seconds, and we take one measurement at each data point.

Results. Figure 5 shows the results of these experiments. In Figure 5(a), they-axis shows the

average maximum delivery latency. At each rate delay we measure the maximum delivery latency of

all messages from a source. We then average over all sources. The speedup of TOVF compared to

TOF is shown in Figure 5(b). The graphs indicate that in our experiment TOVF can deliver messages

up to20 times faster than TOF.

6.4.2 Wireless Transmission

Setup. We arrange5 motes in a line. We place each mote so that it can reliably communicate with

its adjacent neighbors, but cannot communicate with other motes. That is, each mote has up to2
neighbors and the network’s diameter is4 hops. Each node is a source and a destination. Source

nodes multicast10 messages. We use a base rate of25 seconds. We vary the rate delay from0 to 7
seconds. We fix the frontier message rate at6 seconds. That is, each node will send a frontier message

every6 seconds.

Results. Figure 6 shows the results of these experiments. In Figure 6(a), they-axis shows the

average maximum delivery latency. This latency is calculated as follows: for each experimental trial

we measure the maximum delivery latency of all messages from a source. We then compute the

average over all sources and at least5 trials. The speedup of TOVF and TOVF+ compared to TOF is

shown in Figure 6(b).

The graphs in Figure 6 show that both TOVF and TOVF+ outperform TOF. Notice the TOVF+

speedup increases with rate delay while the TOVF speedup remains constant. This is due to the

following. For TOVF the highest timestamped entries fromSeenare carried in the original flooding

of the source message and any rebroadcasts of the source message. With TOVF+ these entries are

sent with each frontier message as well, increasing the speed at whichSeengets populated with the

entries necessary to TO-deliver the next message inREADY. By sending and receiving the highest

timestamped entries more frequently, TOVF+ is able to achieve a greater speedup than TOVF. As

TOVF+ does not respond to changes in rate delay, its scalability should be higher.

6.4.3 Impact of Frontier Message Rate

Setup.We conduct these experiments in the same manner as in Subsection 6.4.2. We fix the rate delay

at0 seconds, use a base rate of25 seconds and vary the frontier message rate from0 to 30 seconds.
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Figure 5: Speedup in implementation: wireless channel emulation.
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Figure 6: Speedup in implementation: wireless transmission.
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Results.Figure 7 shows the results of these experiments. They-axis shows the maximum delivery

latency of TOVF+ while the secondy-axis shows the speedup compared to TOF. Note that a frontier

message rate of0 is TOVF. The graph in Figure 7 shows that the frontier message rate has a significant

impact on both the maximum delivery latency and the obtained speedup. It should be noted that the

rate at which frontier messages are sent impacts both the recovery speed for lost messages and the

speed at which causality information propagates.

As there is a range of frontier message rates at which TOVF+ outperforms TOVF, one can tailor

the rate to meet the system objectives. If sufficient channel bandwidth exists to handle the additional

traffic of sending frontier messages frequently, then the lowest possible delivery latencies can be

achieved. If the additional overhead is unacceptable, the system may still achieve lower delivery

latencies than TOVF while sending fewer frontier messages.

6.5 Simulation Results

Setup.We simulate50 motes arranged in5 × 10 grid. Each mote can communicate with its adjacent

neighbors in the grid. That is, each mote has up to4 neighbors and the network’s diameter is13.

The links are reliable. The4 nodes located on the corners of the grid are sources. All nodes are

destinations. The source nodes multicast10 messages. We use a base rate of100 seconds. In our

simulation we vary the rate delay from0 to 7 seconds. We fix the frontier message rate at6 seconds.

Results. The graph in Figure 8 shows that both TOVF and TOVF+ outperform TOF in the sim-

ulation, with TOVF+ achieving a greater speedup than TOVF. Our simulation result concur with our
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experimental results.

7 Conclusion

We would like to observe a salient property of DRIFT. While convenient for total order multicast, vir-

tual flooding can efficiently propagate information of any type. In wireless sensor networks there are

many commonly used services that would provide the carriers for virtually flooded data. For exam-

ple, time synchronization is frequently required in sensor networks. This service needs to exchange

messages between the sensor nodes at a fixed rate. Moreover, the time synchronization information is

rather compact. Thus, virtual flooding can be used to propagate other data (e.g. sensor data) on time

synchronization messages.

DRIFT and virtual flooding are based on physical flooding as basic communication primitive.

However, in other settings message dissemination can be implemented using techniques other than

flooding. For example, a minimal connected dominating set [27] or tree-structured routing scheme

can be used. DRIFT and virtual flooding can be adapted to work over these topologies as well.

We demonstrated through experimentation and simulation the effectiveness of DRIFT as a total

order multicast delivery mechanism for ad hoc networks. Future work calls for more detailed explo-

ration of the applicability of DRIFT. In particular, it would be beneficial to understand the performance

gains achievable on resource rich platforms, in field deployments, and at much greater scale.
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